12 research outputs found

    Core handling and processing for the WAIS Divide ice-core project

    Get PDF
    On 1 December 2011 the West Antarctic Ice Sheet (WAIS) Divide ice-core project reached its final depth of 3405 m. The WAIS Divide ice core is not only the longest US ice core to date, but is also the highest-quality deep ice core, including ice from the brittle ice zone, that the US has ever recovered. The methods used at WAIS Divide to handle and log the drilled ice, the procedures used to safely retrograde the ice back to the US National Ice Core Laboratory (NICL) and the methods used to process and sample the ice at the NICL are described and discussed

    Core handling and processing for the WAIS Divide ice-core project

    Get PDF
    On 1 December 2011 the West Antarctic Ice Sheet (WAIS) Divide ice-core project reached its final depth of 3405 m. The WAIS Divide ice core is not only the longest US ice core to date, but is also the highest-quality deep ice core, including ice from the brittle ice zone, that the US has ever recovered. The methods used at WAIS Divide to handle and log the drilled ice, the procedures used to safely retrograde the ice back to the US National Ice Core Laboratory (NICL) and the methods used to process and sample the ice at the NICL are described and discussed

    Physical properties of the WAIS Divide ice core

    No full text
    The WAIS (West Antarctic Ice Sheet) Divide deep ice core was recently completed to a total depth of 3405 m, ending ~50 m above the bed. Investigation of the visual stratigraphy and grain characteristics indicates that the ice column at the drilling location is undisturbed by any large-scale overturning or discontinuity. The climate record developed from this core is therefore likely to be continuous and robust. Measured grain-growth rates, recrystallization characteristics, and grain-size response at climate transitions fit within current understanding. Significant impurity control on grain size is indicated from correlation analysis between impurity loading and grain size. Bubble-number densities and bubble sizes and shapes are presented through the full extent of the bubbly ice. Where bubble elongation is observed, the direction of elongation is preferentially parallel to the trace of the basal (0001) plane. Preferred crystallographic orientation of grains is present in the shallowest samples measured, and increases with depth, progressing to a vertical-girdle pattern that tightens to a vertical single-maximum fabric. This single-maximum fabric switches into multiple maxima as the grain size increases rapidly in the deepest, warmest ice. A strong dependence of the fabric on the impurity- mediated grain size is apparent in the deepest samples

    Participation in Transfer Pricing: The Role of Affective and Cognitive Mechanisms

    No full text
    This study examines how transfer pricing participation is related to satisfaction and organizational outcome. We propose and test a structural equation model that includes both direct and indirect links between participation and organizational outcome which is measured by transfer pricing effectiveness and firm performance. Based on the data collected from a cross-sectional survey of subsidiary/division managers in China and applying the structural equation modeling technique, we find that transfer pricing participation affects transfer pricing effectiveness not only directly but also indirectly through both affective and cognitive mechanisms as intervening variables. However, we do not find any direct impact of transfer pricing participation on firm performance. Transfer pricing participation affects performance only indirectly through affective and cognitive mechanisms. The findings of this study contribute to the accounting literature and enhance our understanding of participation behavior and its consequences in transfer pricing decisions
    corecore